Lecture 8

Frequency Responses of a System

Peter Cheung Department of Electrical & Electronic Engineering Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/ E-mail: p.cheung@imperial.ac.uk

Transfer Function H(s) vs Frequency Response H(jω)

Frequency Response Example (1)

• Find the frequency response of a system with transfer function:

$$H(s) = \frac{s+0.1}{s+5}$$

- Then find the amplitude and phase response y(t) for inputs:
 - (i) x(t) = cos 2t and (ii) $x(t) = cos(10t-50^\circ)$
- Substitute $s=j\omega$ $H(j\omega) = \frac{j\omega + 0.1}{j\omega + 5}$

$$|H(j\omega)| = \frac{\sqrt{\omega^2 + 0.01}}{\sqrt{\omega^2 + 25}} \quad \text{and} \quad \angle H(j\omega) = \Phi(j\omega) = \tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{5}\right)$$

Frequency Response Example (2)

for input x(t) = cos 2t and $x(t) = cos(10t-50^\circ)$

Frequency Response Example (3)

• For input x(t) = cos 2t, we have:

$$|H(j2)| = \frac{\sqrt{2^2 + 0.01}}{\sqrt{2^2 + 25}} = 0.372$$
 $\Phi(j2) = \tan^{-1}\left(\frac{2}{0.1}\right) - \tan^{-1}\left(\frac{2}{5}\right) = 65.3^{\circ}$

Therefore

$$y(t) = 0.372\cos(2t + 65.3^{\circ})$$

Frequency Response Example (4)

For input x(t)=cos(10t-50°), we will use the amplitude and phase response curves directly:

|H(j10)| = 0.894

$$\Phi(j10) = \angle H(j10) = 26^{\circ}$$

• Therefore

$$y(t) = 0.894\cos(10t - 50^\circ + 26^\circ) = 0.894\cos(10t + 24^\circ)$$

Frequency Response of delay of T sec

• H(s) of an ideal T sec delay is:

 $H(s) = e^{-sT}$ (Time-shifting property)

Therefore

 $|H(j\omega)| = |e^{-j\omega T}| = 1$ and $\Phi(j\omega) = -\omega T$

- That is, delaying a signal by T has no effect on its amplitude.
- It results in a linear phase shift (with frequency), and a gradient of –T.
- The quantity:

$$-\frac{d\Phi(\omega)}{d\omega} = \tau_g = T$$

is known as **Group Delay**.

Frequency Response of an ideal differentiator

 $H(j\omega)$

 $\angle H(j\omega)$

 $\pi/2$

- H(s) of an ideal differentiator is: H(s) = s and $H(j\omega) = j\omega = \omega e^{j\pi/2}$
- Therefore

$$|H(j\omega)| = \omega$$
 and $\angle H(j\omega) = \frac{\pi}{2}$

This agrees with:

 $\frac{d}{dt}(\cos\omega t) = -\omega\sin\omega t = \omega\cos(\omega t + \pi/2)$

 That's why differentiator is **not** a nice component to work with – it **amplifies high frequency** component (i.e. noise!).

Frequency Response of an ideal integrator

Frequency Response of Bulb Box

Theoretical Frequency Response of Bulb Box

